Intermediate Algebra Formulas Quiz 2 - Use This to Study

Some factoring formulas:

Sum of Cubes Difference of Cubes

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$
$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

Difference of Squares

es
$$a^2 - b^2 = (a+b)(a-b)$$

Some work times formulas:

Two laborers:

$$\frac{1}{x} = \frac{1}{a} + \frac{1}{b}$$

Three laborers:

$$\frac{1}{x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

When something moves a distance d at rate r for time t, then d = rt

When simplifying a radical: If your variable could be negative and the index of the radical is even the result must be placed in absolute value bars

If *n* is a positive integer greater than 1 and $\sqrt[n]{a}$ is a real number, then $a^{1/n} = \sqrt[n]{a}$

If m and n are positive integers greater than 1 with $\frac{m}{n}$ in simplest form, then $a^{m/n} = \sqrt[n]{a^m}$

As long as $a^{m/n}$ is a nonzero real number, $a^{-m/n} = \frac{1}{a^{m/n}}$

The Product Rule for Radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$

The Quotient Rule for Radicals: If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, and $\sqrt[n]{b}$ is not zero, then $\sqrt[n]{a}$

$$1 \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

The distance between two points, (x_1, y_1) and (x_2, y_2) , is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

The midpoint of the line segment whose endpoints are (x_1, y_1) and (x_2, y_2) is the point with coordinates

The Pythagorean Theorem: If a and b are the legs of a right triangle, and c is its hypotenuse, then $a^2 + b^2 = c^2$

The imaginary unit, written i, is the number whose square is -1. That is, $i^2 = -1$ and $i = \sqrt{-1}$

If a is a positive number, then $\sqrt{-a} = i \cdot \sqrt{a}$

The Square Root Property: If X is any algebraic expression, c is a real number, and $X^2 = c$, then $X = \pm \sqrt{c}$

The Quadratic Formula: If $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ and its discriminant $b^2 - 4ac$ tells the quantity and type of solution(s).

Given the parabola $y = f(x) = ax^2 + bx + c$, its vertex is the point $\left(\frac{-b}{2a}, c\right)$